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Abstract. When many or all of the recipients of a multi­
cast message respond to the rrudticast' s sender, their responses 
may overflow the sender's available buffer space. Buffer overflow 
is a serious, known problem of broadcast-based protocols, and 
can be troublesome when as few as three or four recipients 
respond. We develop analytical models that calculate the 
expected number of buffer overflows that can be used to estimate 
the number of buffers necessary for an application. The common 
cure for buffer overflow requires that recipients dela.y their 
responses l7y some random amount of time in orde~ t? increas~ 
the minimum spacing between response messages, elUTUnate colli­
sions on the network, and decrease the peak processing demand 
at the sender. In our table driven algorithm, the sender tries to 
minimize the multicast's la.tency, the elapsed time between its ini­
tial transmission of the multicast and its reception of the final 
response, given the number of times (rounds) it. is willing. to 
retransmit the multicast. It includes in the multiCast the ttme 
interval over which it anticipates receiving the response, the 
round timeout. We demonstrate that the latency of single round 
multicasts exceeds the la.tency of rrudtiple round multicasts. We 
show how recipients minimize the sender's buffer overflows by 
independently choosing their response times as a function of the 
round's timeout, sender's buffer size, and the number of other 
recipients. 

1. Introduction 

A multicast message is a message simultaneously sent 
(broadcast) to a group of recipients. When a recipient s~te 
receives a multicast transmission, it formulates and forwards tts 
response to the multicast's original sender. These numerous, 
closely spaced, responses may overwhe~ the mu~tic~t's sen~er, 
causing buffer overflow in its network mterface, m 1ts operatmg 
system, or in its outside-the-kernel communication protocol 
processes. If the operating system implements protocol process­
ing in the user's address space [1], responses passing through the 
operating system may overflow buffers in the user process that 
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initiated the multicast because this is swapped out, blocked, or 
does not receive adequate processor time. We illustrate these 
overflow points in Figure 1. 

Since real systems have finite memory, they have finite 
buffers. However most finite buffer queueing analyses apply only 
to stationary, homogeneous arrival processes; little work exists in 
the analysis of finite buffer systems [2] [3] [4] with non­
stationary, heterogeneous arrival processes. Standard blocking 
system analyses from text books do not apply to this problem 
because they deal with stationary Poisson and stationary general 
arrival processes. The arrival process of responses to a multicast is 
neither stationary nor homogeneous. It is not homogeneous since 
the responses come from both fast and slow machines; it is not 
stationary since the arrival rate decreases as responses are 
received. In this paper, we calculate buffer overflow losses due to 
responses from multicast transmissions. Having calculated the 
number and distribution of losses, we describe an algorithm that 
minimizes the time to receive all responses to a multicast given 
that the sender is willing to retransmit a certain number of times. 
In the remainder of this section we define terminology, present 
several situations for which multicast is appropriate, and describe 
our model of the network. 

We say the sender sends a multicast to the recipients and 
that each recipient responds with its response. The elapsed time 
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Figure 1. Where losses may occur. 
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between the instant the multicast is sent and the instant a 
recipient's response is received is the recipient's response time. 
The probability distribution function of the recipient's response 
time is the response time distribution. The probability distribu­
tion function of the time devoted by the sender to process a 
response and free the buffer in which it is stored is the sender's 
service time distribution. Additional time that a recipient holds its 
already calculated response before sending it to the sender is the 
recipient's backoff time. The number of times the sender rebroad­
casts the message is the number of multicast rounds. The time 
window associated with each round during which the sender col­
lects responses is the round's timeout, see Figure 2. We treat 
responses that arrive after the round's timeout expires as losses 
during that round and assume their response time is resampled for 
each subsequent round. The elapsed time between the sender's 
initial transmission of the multicast and its receipt of the last 
responses is the multicast latency. We do not measure time in 
seconds or in milliseconds, but rather treat it as a unitless quantity. 
We require, however, that the service time and response time dis­
tributions be expressed in identical unit systems. 

1.1. Our Model of the Network 

The analyses in the following sections assume (1) the net­
work is unreliable, and some sites may not hear transmissions 
received at other sites; (2) except where noted, the network is oth­
erwise idle; (3) messages do not collide on the wire; and (4) 
except where noted, messages require no transmission time. 
Equivalently, assumptions 3 and 4 say the network bandwidth is 
infinite. These assumptions make our analysis possible, and tend 
to overestimate the number of buffer overflows experienced in 
practice for the following reasons. Competing network traffic 
gives the sender extra time to service its buffers. Ignoring mes­
sage length permits responses to arrive closer together than physi­
cally permitted by the network. Ignoring collisions and their 
prescribed rescheduling reduces the time period over which the 
responses arrive. Since collisions do not occur on ring networks, 
these analyses perhaps better model rings than CSMA/CD net­
works. Finally (5), we assume that all recipients of a multicast 
respond to the sender if only to acknowledge that they correctly 
received the message. 
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Figure 2. Three rounds of multicasL 

1.2. Why Overflow is Important 

Speed mismatches at the interface of system layers cause 
buffer overflow. The bit rate of fiber optic networks exceeds the 
rate at which data can be copied into most computer's memory 
and definitely exceeds the rate at which the computer's protocol 
processing runs. These speed mismatches will always exist. 
Although various proponents of broadcast-based protocols believe 
that the problem of buffer overflows is solved in practice, this is 
not true. Let us review their arguments. 

Although many existing network interfaces can not keep 
pace with the network and possess few buffers, some argue that 
interface technology is improving and buffer overflow at the inter­
face will not be a problem in the near future. While true for the 
slow Ethernet, we argue that as interface technology advances, 
network speeds are advancing many times faster, and these prob­
lems will reappear. FDDI, a 100 MBit/Sec ring network, exceeds 
the the memory access speed of most existing computers. Since a 
multicast's responses come from many computers and outstrips 
the rate at which a single computer can send messages, these 
responses will have to be buffered in the interface. The cost of 
high speed buffer memory will limit the buffer size within these 
interfaces, and buffer overflow at the interface will again be a 
problem. Regardless of network speed, the various computers on a 
network will always have disparate speeds and buffering capacity. 
Fast computers must communicate with slow computers. Histor­
icly, interface technology lags behind the introduction of new net­
works. 

Some argue that the number of acknowledgments can be 
reduced. The ordered broadcast algorithms proposed by Chang 
and Maxemchuk [5] eliminate most acknowledgements because 
recipients do not respond to the sender. The number of ack­
nowledgements is a tunable parameter. However, their algorithms 
suffer long delivery latency times, are complex, and do not apply 
to situations where the recipients must respond by transmitting 
data to the sender. 

Others argue that acknowledgments can be missed. The V 
kernel deterministically missed two out of four and one out of 
three responses [6], Cheriton says this is not a problem as he 
needs only the first response, but not everyone needs only the first, 
or the first few responses. 

We must understand the fundamental statistics behind 
buffer overflow to address the problem adequately, wherever it 
occms. Buffer overflow can occur within the operating system 
and protocol processing processes. For example, the Berkeley 4.3 
BSD Unix implementation of DARPA's TCP!IP [7] protocol 
devotes only 4 kilobytes (by default) to protocol buffer space [8], 
and such a small buffer can easily overflow. Throwing memory at 
the problem wastes resources and may not be possible in small 
systems found, for example, on factory floors. 

1.3. Previous Work 

Although many distributed systems employ broadcast and 
broadcast-based multicast, researchers have lent little attention to 
''backoff'' algorithms. Gusella and Zatti [9] employed backoff to 
reduce Ethernet collisions.. Recipients held their responses for an 
additional random delay drawn from the uniform distribution on 
some interval. Our problems differ fundamentally. We minimize 
the expected time to collect all responses to a multicast, explicitly 
introducing the number of times the sender may retransmit the 
multicasL The system designer chooses the number of 
broadcast-based retransmissions that he will endure (Additional 
broadcasts extraneously interrupt those recipients that have 



successfully responded). Knowing this, the number of buffers 
available, and the sender's service time distribution, we minimize 
the expected number of buffer overflows by deriving each round's 
optimal timeout and recipients' optimal common arrival time dis­
tribution. Recipients choose their backoff functions such that the 
combination of their natural response time distribution and back­
off time function is distributed with this optimal distribution. We 
assume that the sender includes a bit-map of successfully ack­
nowledged sites with each retransmission. Tills processes can be 
approximated and implemented in real systems. 

1.4. Outline of The Paper 

In Section 2, we consider overflow of single buffer sys­
tems. This illustrate the techniques we use to analyze overflow of 
multiple buffer systems and calculate the expected number of 
buffer overflows (back-to-hack message loss) of single buffer sys­
tems. We repeat these analyses for several response time and 
buffer service time distributions. In Section 3 we derive a 
dynamic program that calculates the expected number of overflow 
losses for multiple buffer systems with general response time and 
exponential buffer service time distributions and for exponential 
response time and deterministic service time distributions. In 
Section 4, we pose the problem of finding the optimal timeout, 
common arrival distribution and backoff function that minimizes 
the expected number of buffer overflows during a round of multi­
cast. For two recipients, exponential buffer service time, and a 
one buffer system, we derive the exact optimal response time dis­
tributio~ that minimizes the expected number of losses for a given 
~und ~eout. We apply. these concepts in several examples. 
Fmally, m Section 5 we revrew our findings and oudine our future 
research plans. 

2. Buffer Overflow of Single Buffer Systems 

Th~ number of buffer overflows depends upon the recipient 
response time and buffer service time distributions. We restrict 
our analysis to single buffer systems in this section because they 
are easier to analyze than multiple buffer systems, and because we 
can express their expected number of buffer overflows in closed 
form. w~ begin with the analysis of systems with preassigned 
:esponse mst.ants. ~er explaining why preassigned response 
mstants are nnpractlcal, we devote the rest of the section to 
analy~~ multicast systems with independent, identically distri­
buted (1.1.d. ) response time distributions. Single buffer systems 
suffer overflow if the interarrival time between subsequent 
responses, the back-to-back inter-message time, is less than the 
buffer service time. Borrowing the notation of queueing theory, 
we denote a multicast to N recipients, which respond with com­
mon response time distribution R, to a K-buffer server with ser­
vice time distributionS, as an RN IS 11/K system. 

We defer the analysis of exponential response time, 
exponential buffer service time distributions to Section 3, the dis­
cussion of multiple buffers systems, and start by analyzing con­
stant buffer service time systems. Constant service time models 
network interface behavior well. The time to move a message 
from the network interface to the operating system is the sum of 
the interrupt service latency and the time for the DMA transfer 
between interface and memory. If the responses are of equal size, 
this time is roughly constant (Some interfaces do not buffer 
entire messages, buffering a few bytes at a time in a FIFO 
instead.) 

2.1. Preassigned Response Instants, DN/M/1/1 

.. In theory, we could assign a response instant Y; to each 
recrp1ent. For example, we could assign to each recipient i , a 
unique instant i 0 at which it should respond to the multicast 
sender. This system is easily modeled as its interarrival times are 
c~nstant If the buffer service time is exponentially distributed 
wrth mean 1/J.L, then the expected number of overflows is the 
expected number of buffer service time intervals longer than 8. 
Using the method of indicator variables introduced below, we can 
show that 

N 

E[ Losses]= L e-lil' = (N-1) e-lift. 
j:!J. 

If the buffer service time is a constant ~. no overflow 
occurs when 0 > ~. Although preassigning response instants exhi­
bits few losses, it requires maintaining a group list, requires accu­
rate deadline scheduling, assumes that all recipients can calculate 
their responses before their mandated response instant expires, 
and can be unnecessarily slow when we do not require that all 
recipients respond. To illustrate this last point, consider the prob­
lem of finding a lighdy-loaded site for balancing. Theimer [10] 
suggests that sites schedule their responses proportionally to their 
~oads and ?ot respond at all if they are unwilling to accept more 
JObs: Assrgned response instants increase the expected time to 
recerv~ a sm~ n~ber of responses, and is too rigid of a policy. 
We will consrder 1.1.d. random, response time distributions for the 
remainder of this section. 

2.2. Upper Bound for MN/D/1/1 Systems 

Each recipient i responds at instant y; independently of 
other recipients, where y; is drawn from the exponential distribu­
tion with mean VI.., 

Pr ( y; ~ t ) = F (t) = 1- e -'A.t. 

We employ order statistics [11] to calculate the expected 
number of buffer overflows. 

B~efly, the order statistics YCl>o Y<Zl• ••• , Y<Nl of N i.i.d. ran­
dom Variables Yto yz, ... , YN are theY; 's sorted in increasing order 
That is · 

The joint distribution of the order statistics of N i.i.d. con­
tinuous random variables is 

N 

n flf(y;) · 
i=l 

If liNt.., the initial expected interresponse time is not 
significantly .larger than the constant buffer service ~ime ~. 
responses arnve closely spaced and easily overflow the buffer. 
The expected time to receive all N responses is the expected value 
of the slowest of theN independent response instants, 

E [y(N)l = A.-1 (1+2-1+ ... +N-1
), 

the maximum of N i.i.d. , exponentially distributed random vari­
ables. 

Recall that the sum of exponentially distributed random 
variables is itself exponentially distributed with rate equal to the 
sum of the individual rates. Immediately after the multicast, but 
before any recipient responds, the responses arrive at rate N A.. 
After the first response, this drops to (N -1 )f.., and each 



subsequent response decreases the future arrival rate by A.. 

Since responses require buffer service time ~. the buffer 
overflows if any interarrival interval is shorter than ~· The proba­
bility <I» that no two responses arrive within time ~. that is the pro­
bability that no responses are lost, is the product of the probabili­
ties that all N -1 interrarrival times exceed ~. Since y (i + l) arrives 
with rate (N-i)A., the probability that the interval between Ytil and 
Yti+ll exceeds the service time~ is 

Pr [yi+t- y; > ~] = e-(N -i)).~. (1) 

The probability <I» then is the product of the probabilities that all 
interarrival intervals exceed~. 

N~ 

N-1 . -~). ~j 
<I»=lle-1\JA=e , .. =e-~AN(N-1)12. 

j=l 

We discover that the mean response time liA. must grow 
quadratically with N to achieve a small probability of overflow. 

The expected number of interarrival intervals shorter than 
~ bounds the expected number of buffer overflows. We employ 
the method of indicator variables to derive this upper bound, 
which is a more convenient expression than the exact number of 
overflows calculated later in this section. 

Let the indicator variable/;(~) be 

{ 

1 if ( Yei+1l- Yeo):;; ~. 
/;(~) = 0 otherwise. 

The expected number of short intervals is 
N-1 N-1 N-1 

E[L /;(~)] = L E[/;(~)] = L Pr [ YCi+ll- YCil:;; ~]. 
i=l i=l •'=1 

(2) 

The probability that <Yei+l)- Ye;J):;; IJ is given by (1). The 
expected number of short intervals bo1D1.ds the expected number 
of overflow losses, and grows tighter with decreasing expected 
number of overflows. Keep in mind that the exponential 
distribution's weight extends to infinity, an infinite horizon, and 
additional losses are possible for responses that arrive after the 
round's timeout expires. The expected number of losses is 
bounded above by 

~-1 N-1 

E[Losses]SE[L /;(IJ)]= L (1-e-i).jl) 
i=l j=l 

(3) 

2.3. Upper Bound for UN/D/1/1 Systems 

In this case, each recipient i responds at instant Y; drawn 
independently from the uniform distribution on the interval (0, 't). 
The expected time to receive allN responses is the expected value 
of the N 111 order statistic YtNl• 

N't 
N +1' 

The probability density function of the order statistics of N uni­
formly distributed random variables is 

N! 
f ( Yetl• Yt2l• ... , YeNJ) = 7· 

The probability of no buffer overflow, <I», equals the proba­
bility that all N-1 interarrival intervals exceed ~. and can be 
foiDl.d by evaluating the integral1 

~-N~ ~-{N-1)~ 

<I»= !:!.l r f ... f dyN ... dy1. 
~ 6 1>+~ ,.~+II 

The first integral corresponds to the arrival time of the first 
response. The lower limit of each subsequent integral is ~ greater 
than its predecessor. This represents the constraint that each 
interarrival period exceed ~- Integrating yields 

cl»= ~ [7] (~i(N-1);(-1)' = [ 1- (N -1) !r (4) 

We have calculated the probability <I» of no overflow loss 
given the response time is uniformly distributed on (0, 't). 
Employing indicator variable/;(~). defined in (2), we can bound 
the expected number of responses lost to buffer overflow by the 
expected number of interarrival intervals shorter than ~. 

~-1 •-1 ~-1 

E[L /;(~)] = L E[/;(~)]= L Pr[ Yei+tl- Yeo:;;~]. (5) 
i=l i=l i=l 

Each term in summation (5) corresponds to an integral similar to 
the one shown below, and it turns out that these integrals are 
identical. The integral corresponding to the summation's last 
term is 

Substituting (6) into (5) and adding up terms, we find the expected 
number of closely spaced responses, an upper bo1D1.d on the 
number of losses, is 

E[losses]S(/'/-1)(1-i:[~ (-1i (~);) 
i=O i J 't 

:;; (N -1) (1- (1- ~f). 
't 

(7) 

We employed order statistics to arrive at the probabilities the 
interrarrival interval exceeds ~· However there exists an elegant 
proof which yields the same. Place n+1 points uniformly on the 
circle with circumference 't. Cut the circle at one of these points 
and label one end 0 and the other 't. From symmetry arguments, 
one arrives at (7). 

3. Overflowing Multiple Buffers 

We begin this section multiple buffer systems by finding 
the expected number of overflows when both the recipient 
response time and the sender's buffer service time are distributed 
exponentially, MN !M 11/b. Next we develop a dynamic program 
that calculates overflow losses for a general i.i.d. response time 
distribution with an exponentially distributed buffer service time, 
GN !M !lib. Finally, we apply this program when the recipient's 
response time distribution is uniform, UN IM !lib. 

Figure 3 plots the number of overflows for various 
numbers of recipients, numbers of buffers, and response time 

1 This problem appears in volmne 2 of [12] as problem 24, Section 
I.l3. 



distributions of equal expected completion time YrN>· Notice how 
the response time distribution significantly affects the expected 
number of losses. This effect increases with the number of 
buffers. We devote this section to deriving expressions that accu­
rately predict this behavior. 

3.1. Preassigned Response Instants, DN/M/1/b 

Assign to each recipient a unique time k 0 at which it 
schedules its response. We calculate the expected number of 
losses by observing that a loss occurs if all b buffers are occupied 
when a recipient responds. Define L. (s) as the expected number 
of losses when n recipients respond, s buffers begin occupied, and 
the first of the n responses arrives immediately. 

HI 

L.(s)= l:L._1(s+l-i)P,+1,; 
j=() 

b 

L.(b)= 1 + l:L._1(b-i)Pb,; 
j=() 

i-1 

P;,; = 1- l:P;j 
j=IJ 

In these equations, we sum over i, the number of buffers 
that are emptied during time 0 before the next response arrives. 
When the next arrival occurs, s+l-i buffers are full, 1 for this 
arrival, s-i for the previously buffered arrivals that were not 
served in the interim. The probability that i, i < s + 1, of the full 
buffers are emptied is simply the probability that i Poisson­
distributed events occur during time o. The probability that all 
s+l are emptied is the probability that non of the events iSs 
occur. 
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Figure 3. Multiple Buffer Overflow for 
(N,b)={ (200,5),(200,10) ) . MN !M !lib and UN !M !lib 
systems. 

3.2. MN/M/1/b Systems 

The problem of finding the number of buffer overflows 
given both exponential response and senlice time distributions is 
relatively easy and can be solved in numerous ways. We begin by 
drawing a two-dimensional Markov chain, where state (i ,) ) 
means i responses are outstanding and j buffers are full (see Fig­
ure 4). When b=l, we can write the expression for the expected 
number of buffer overflows by inspection. 

N-! ")._ 

E[losses] = L ~. 
j=l 1.1.+ 1 II. 

Alternatively, we can write a fast dynamic program [13] to count 
the expected number of buffer overflows. 

(8) 

p - nA. 
•.b- nA.+ uo(s)J.l. 

where u0 is the unit step function. 

This program can be quickly calculated bottom up. In the next 
section we present a brute force technique that yields an exact 
solution for general response time distributions. 

3.3. GN/M/1/b Systems 

The dynamic program below finds the number of buffer 
overflows suffered by multiple buffer, general response time, 
exponential service time systems. The calculation is reminiscent 
of G!M!l!b loss system analysis of classical queueing theory. 
Let L. (s, t) be the expected number of overflows given that s of 
the b buffers start full, the last arrival occurred at timet, and n 
additional arrivals remain outstanding. L. (s, t) is an integral 
over the arrival time, x, of the next arrival. Since all arrivals are 
drawn from a common response time distribution, we can easily 
express the probability density function, f •, of the next arrival. 

The probability distribution function of each of the remain­
ing n responses, conditioned on the arrival time t of the last 
arrival, F (y I y > t ), is 

Pr(y Sx I y >t)= P(y Sx) = F(x) 
P(y >t) 1-F(t) 

Similarly, 

I >t) = P(y >x) = 1-F(x). 
Pr ( y > x y P (y > t ) 1 - F (t) 

The probability density function of the next arrival is then the pro­
duct of this density and the probability that the remaining n-1 
responses arrive later, all multiplied by n, the number of ways to 
select the first arrival. 

x _ n 1 - F (x ) f (x) 
[ ] 

n-1 

/.( )- 1-F(t) 1-F(t) 

We now unveil the recursive expression for the expected 
number of overflows, L. ( s, t ). 
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Figure 4. Markov chain that corresponds to the M 20!M /1/3 
system. 

Ln (s, t) = (9) 

' J fn(X) :I:Ln-!(s+1-i,x)p>+!,i(X -t) dx. 
I i=O 

Ln (b, t)= 

Lo (s, t) = 0. 

i<s, 

i=s. 

The sums are over the nwnber of buffers serviced before the next 
response arrives at time x. We swn the expected nwnber of 
overflows that occur when the remaining n-1 responses arrive 

given the s + 1 - i buffers are occupied. The nwnber s + 1 - i 
proceeds from the s buffers previously occupied, one more for the 
new arrival, less the i guffers that were served during timex that 
no responses arrived. 

When all b buffers are full, then a loss occurs with proba­
bility Ph .o. the probability that no buffers are emptied before the 
next response arrives. Although formidable in appearance, we can 
integrate expression (9) in polynomial time. For example, we 
now apply (9) to the case of uniformly distributed response times. 

3.4. UN/M/1/b Systems 

We can more easily calculate the solution to dynamic pro­
gram (9) for uniformly distributed response times than for any 
other response time distribution. Exploiting the fact that the 
arrival distribution of the remaining responses is also uniform 
when it is conditioned on knowing the arrival instant of the most 
recent response, we redefine Ln ( s, t) to be the expected number 
of losses when n responses remain outstanding given that s 
buffers start full and the remaining responses arrive uniformly on 
(0, t ). 

(10) 

i:Ln-J(s-i+1,t-x)p,,;(x)l dx 
i=O J 

Ln(b, t)= !!.J t -x :LL .. -!(b-i+1,t-x)p,,i(x) 
1 [ [ ] n-1 b 

t 0 t i=l 

For single buffer systems with uniform responses on (0, -t), 
this dynamic programs yields the closed form solution 

n!(n-l){(J.l.'tt1 i (J.l.'tti(-1YI(n-1-i)! 
i=O 

Although closed form solutions for arbitrary nwnbers of 
buffers (b * 1, b 'I'N- 1) are not possible, we can always 
integrate (10). For example, expected overflow losses for N=4 
recipients that arrive on (0, 1) and with a b-buffer system are 
given by 

b=l: 12((J.i.-1-3J.L-2+4L-3-6J.L_..) + e-11 (6J.L-4)). 

b=2: 12((2J.L-2-6J.L-3+4J.L-4) 

Although the uniform response time distribution suffers 
fewer expected losses than the exponential distribution, it does not 
minimize buffer overflow. Finding the optimal, i.i.d. response 
time distribution that minimizes the nwnber of buffer overflows 



depends on the service distribution, the number of buffers, the 
number of responses, and the number of buffers that start full. 
We consider this problem in Section 4. 

4. Finding the Backoff Algorithm and Round Timeouts 

In many situations, all the recipients calculate and transmit 
their responses to the sender within a brief time of each other, and 
the sender loses some or many of these responses, and must 
request that certain sites repeat their responses. Demanding that 
each recipient delay its response for some random time alleviates 
the buffer overflow. We call this delay recipient backoff, and, in 
this section, construct an optimal backoff algorithm based on each 
recipient's measured response time distribution. Our algorithm 
suffers the fewest possible expected number of overflows, given 
that all recipients must respond before the round's timeout 
expires. We employ the backoff algorithm to minimize our 
multicast's cost metric, a linear, weighted sum of the number of 
broadcasts, number of responses, and overall elapsed time 
(latency). Alternatively, the sender can choose the number of 
broadcast-based rounds beforehand, and calculate each round's 
timeout immediately prior to broadcasting the round, so as to 
minimize the overall latency. 

Finding the i.i.d. arrival time distribution that minimizes 
buffer overflow, given the number of recipients, number of 
buffers, round timeout, and buffer service distribution, we believe, 
is an unsolved problem. We call this the Dynasty Problem2 and 
begin by solving it for two recipients, one buffer, and exponential 
buffer service time distribution. We note that its solution is com­
posed of a uniform and a bimodal distribution, and our simulation 
study suggests that such a distribution is optimal for any number 
of recipients and buffers. 

4.1. Optimal Response Time Distribution, Two Responses, 
One Buffer 

Consider the problem of finding the common i.i.d. 
response time density h (y ), 0 S y S 1, that mirtimizes the number 
of overflows of a single buffer server when there are two 
responses, and buffer service time is exponentially distributed 
with mean 1/Jl. Or equivalently, find the common i.i.d response 
time density that minimizes the probability that the first response 
is still in service when the second arrives. If it is, the second 
response overflows the buffer, otherwise it does not. 

The expected number of overflows, or this probability, is 
1 1 

2 r f e-c,.-,.)!1h(yz)h(yt)dyzdy1 (11) 
6,. 

constrained by the equations that make h ( y) a probability density 
function 

1 1 

2Jf h(yz)h(y1)dy1dy 2 =1. 
0 J• 

and 

h (y) ~ 0 , 0 S y S1 . 

Although this appears solvable by the calculus of variations [14], 
the optimal distribution h ( y ) does not have continuous first and 

2The name DyNlSty recognizes a Berkeley restaurant, dubiously 
honored with the city's worst health inspection record. 

second derivatives, a requirement for that technique. Instead, we 
transform (11) into a discrete optimization problem by subdivid­
ing (0, 1) into M identical subintervals, and apply the method of 
Lagrange multipliers [15] to find the optimal, discrete distribution. 

Denote the number of losses by L (p ). 
M M M 

L(p)=l:P;2+2l: L PiPie-U-iJIJ.IM. 
i=l i=t I=i+l 

We introduce Lagrange multipliers to incorporate the constraint 
equations. 

M 

l (p,A.) = L (p) +A. (( LPi)- 1 ). 
i=1 

v, l(p,A.) = 0. 

We solve this system of M + 1 linear equations for the discrete 
solution p. The endpoint probabilities p 1 and PM are equal, and 
the interior-point probabilities are equal. 

ei'IN 

ei'IM -1 
pz= ... =PM-t= M(ei"M-1)+2. 

Taking the limit as integer M becomes large and substituting 
(1+1lfM) for ei'IM, we find the weight at the interval's endpoints 
is conserved 

1 
P1=PM=--, 

Jl+2 

and the probability density of the interior points remains uniform. 
The optimal i.i.d continuous density function is 

h(y)= B(y)+Jl+0(1-y). 
Jl+2 

(12) 

where B(y) is the Dirac delta function. 

We see h (y) is the superposition of a uniform distribution 
and two impulses, one at either endpoint. As the mean service 
time l!Jl decreases, the optimal distribution approaches the uni­
form distribution. As the mean service time increases, the optimal 
distribution approaches the bimodal distribution with equal weight 
of one half at the interval's endpoints 0 and 1. 

We find the expected number of losses by carrying out 
integral (11), substituting (12) for h (y ), 

2 
E [losses] = -

2
- . 
+Jl 

We plot the expected number of losses for the optimal distribution 
(12), the uniform distribution, and the bimodal distribution with 
probability one half at each end point in Figure 5. 

The bimodal arrival distribution always outperforms the 
uniform arrival distribution [17], showing more improvement as 
the number of recipients approaches the number of buffers. 
Assume we knew the optimal arrival distribution on an interval 
(0, 't). If we found a backoff algorithm that mapped each site's 
measured response time distribution into the optimal response 
time distribution, then we would minimize buffer overflow. 

3 A different problem is solved in [16] using similar methods. 
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Figure 5. Losses versus response time distribution for 2 
responses, exponential buffer service, and one buffer. 

4.2. Our Backoff Algorithm 

Since the recipients' response time distributions are neither 
identical to one another, nor equal to some well characterized dis­
tribution, they must be individually measured. Denote recipient 
i 's measured response time distribution by F; and its site­
dependent backoff algorithm by G;. Denote recipient i's 
observed response time to the multicast by y;, and, finally, assume 
the optimal arrival distribution that minimizes buffer overflow 
given N recipients, round timeout 't, and b buffers is known, and 
denoted by H ( N, b, 't). In this section we construct an optimal, 
backoff function G; = G; ( F;, 't, y;) that minimizes the expected 
number of buffer overflows. In the next section we show how to 
select the round's timeout 't. 

We want a backoff function G; such that, when added to 
the site's response time y;, it transforms the site's response time 
distribution F; into the optimal arrival distribution H. If y; 
exceeds 't then the response y; becomes ready during some subse­
quent round of multicast, and we delay it no further. In real sys­
tems late responses may be processed; here, we consider them 
lost. We construct our site specific backoff function G; as fol­
lows. It is the time difference between the optimal distribution and 
the response time distribution corresponding to the observed 
response time. We defer considering response time distributions 
F; that lie beneath H (contrast Figure 6 and Figure 8) until later in 
the section. 

Suppose the optimal arrival distribution were uniform and 
the service time distributions F; lie above it. The equation below 
would give the site specific backoff functions. 

G·(y·)= ( Y; F;(y;) O) 
1 1 max F(-r) , . (13) 

In Figure 6 we plot probability distribution functions H (supposed 
uniform), F 1 (an exponential), and F 2 (another uniform), and the 
backoff functions for site one and two, G 1 and G 2. 
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Figure 6. Several backoff functions G;. 

We want to map F I> exponentially distributed with param­
eter A., onto the uniform distribution on (0, 't). Since the exponen­
tial distribution's tail is infinitely long, some responses may arrive 
after the round's timeout 't expires. Assume such responses are 
lost. However, every response that arrives before 't appears to 
arrive uniformly on (0, 't). Applying equation (13), the backoff 
function is 

We want to map F :z, uniformly distributed on (0, b), onto 
the uniform distribution on (0, 't). G 2 depends on whether the b 
exceeds or falls short of 't. If b exceeds 't, we assume responses 
that arrive after the round's timeout 't expires are lost, and we do 
not further delay them. 

{
0 ifb>'t, 

Gz(yz)= y 2(-r-b)lb otherwise. 

If some third site exhibited an instantaneous response time, 
F 3, then the backoff function would simply be a uniformly distri­
buted random variable. 

G3(y3) =uniform (0, 't). 

This foreshadows the section on discontinuous response time dis­
tributions. If any F; contains a discontinuous jump, then G; maps 
this jump onto a uniformly distributed random backoff time of an 
appropriate duration. 

4.3. Selecting a Round's Timeout 

The problem of selecting a round's timeout is related to the 
problem of detecting failed sites, mentioned earlier. Recall that 
the sender determines that a site has failed if it fails to respond to 
several transmissions. Existing protocols attempt 4 or 5 
retransmissions with timeouts either determined by binary­
exponential backoff or simply set to a few seconds, or tens of 
seconds. If a recipient fails no respond after all of these attempts 
pass, the sender assumes it has failed. On one hand, if we set the 



timeouts too short, each round results in many buffer overflows, 
and 5 rounds may be insufficient to determine site failure. On the 
other hand, if we set the timeouts too lqng, we needlessly increase 
the multicast's latency. Selecting timeouts poses difficult optimi­
zation problems, which we illustrate with several examples. 
Let's assume that recipients respond uniformly on a prescribed 
interval. 

Example. U10/D/1/1, Two Rounds. 

Consider a two-round multicast We want to minimize the 
latency, 't1 + 'tz, such that after the second round, the probability 
that one or more responses remain outstanding due to buffer 
overflow is less than £. We permit the second round timeout to 
depend on the number of overflows experienced during the first 
round. We must solve the optimization problem 

such that 

<II( k, 'tz(k)) > 1-£. k = o ... n-1. 

where <II is given by (4). 

(14) 

In essence, we must select the optimal value for 't1 such 
that the sum of 't1 and E['t7,] is minimized. For this we need the 
discrete probability distribution of losing k responses, P1o which 
is in general difficult to calculate. As this example is no excep­
tion, we choose to approximate this system's distribution by the 
binomial distribution. (In [17] we employ a better, albeit more 
sophisticated approximation). 

The binomial approximation says that a response overflows 
with probability that is independent of all other responses. We 
made a similar approximation in Section 2.3 where we bounded 
the expected number of losses that this system experiences. The 
probability p that a given responses overflows the sender's buffer 
is bounded by the second term of ((7)). 

p =(1- ~f. 
't 

Since only N-1 of the possible N responses can overflow, the 
binomial approximation to the desired P1 is 

In Figure 7 we constrast this approximation with the distribution 
obtained through simulation. It lies to the right of the value 
obtained by simulation because (7) is an upper bound on the 
number of losses. 

If the sender loses k responses during the first round, then 
it must choose 'tz such that the probability <II that it collects the 
remaining k responses during the second round exceeds 1 - £. 

We invert (4) and obtain 

(k) = 1 - (1 - £)Ilk 
'tz k - 1 

We can now calculate E['t7,]. 
n-1 

E['t7,] = L P1 't2(k). 
k=O 

Applying this to the U201D /1/1 system, we examine how 
the choice of the first round timeout 't1 affects the expected value 
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Figure 7. Probability distribution, U 20!d!lll, -t=1, service 
time [3=.01. The approximation is shaded. 

of the total latency, E['t1 + 't7,]. In Figure 8 we plot total latency 
versus the choice of 't1• When 't1 is much smaller than optimal, 
the expected latency approaches the latency of a one round multi­
cast constrained by the same condition that <II > 1 - £. When 't1 is 
much larger than optimal, the expected latency approaches 't1. 
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Figure 8. Total latency of a two round multicast as a func­
tion of the first round timeout 't1• U1!JID /111, Service time 
~ = 1. One round multicasts require 't of 38,000 (£ = 1% ), 
4,600 (£ = 5%), and 3,600 (£ = 10%). 



S. Conclusions 

Existing methods to analyze finite buffer systems [2] do 
not apply to multic~t; while the overflow analyses presented in 
this paper provide insight into making multicast fast. Single 
buffer systems treated in Section 2 yield simple expressions for 
the expected number and distribution of losses. Solving these sys­
tems leads to the techniques used to solve multiple buffer systems. 
Overflow of multiple buffers, treated in Section 3, is frequently a 
problem of multicast in distrubted systems. It has been reported in 
the literature as back-to-back packet losses of Ethernet interfaces, 
and can occur within the layers of software between the network 
interface and the user program. The backoff algorithm and the 
timeout selection problem presented in Section 4 minimize the 
latency of reliable multicast, and minimize buffer overflows 
regardless of whether they occur at the network interface or 
between user-system software boundaries [8] (recall Figure 1). 

These results can help system designers optimize multicast 
protocols, decide on the number of buffers to devote to a multicast 
sender, decide the cut off between using hardware broadcast and 
unicast primitives, and choose the number of rounds of multicast. 
They place selection of the round timeout on firm mathematical 
ground. Beyond the local area network, these techniques apply 
overflow at network gateways caused by internet multicast [18] 
and overflow at LAN bridges caused by extended LAN multicast. 

We have been able to eliminate several of the unrealistic 
assumptions mentioned in Section 1.1, to solve the Dynasty prob­
lem exactly for one buffer systems, and to calculate many of the 
overflow distributions not presented in this paper. In the furture, 
we intend to implement the backoff algorithm efficiently and 
determine how far from optimal a practical implementation must 
lie. 
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